Finding multiple minimum-energy conformations of the hydrophobic-polar protein model via multidomain sampling.

نویسندگان

  • Wei Tang
  • Qing Zhou
چکیده

We demonstrate the efficiency of the multidomain sampler (MDS) in finding multiple distinct global minima and low-energy local minima in the hydrophobic-polar (HP) lattice protein model. Extending the idea of partitioning energy space in the Wang-Landau algorithm, our approach introduces an additional partitioning scheme to divide the protein conformation space into local basins of attraction. This double-partitioning design is very powerful in guiding the sampler to visit the basins of unexplored local minima. An H-residue subchain distance is used to merge the basins of similar local minima into one domain, which increases the diversity among identified minimum-energy conformations. Moreover, a visit-enhancement factor is introduced for long protein chains to facilitate jumps between basins. Results on three benchmark protein sequences reveal that our approach is capable of finding multiple global minima and hundreds of low-energy local minima of great diversity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A test of lattice protein folding algorithms.

We report a blind test of lattice-model-based search strategies for finding global minima of model protein chains. One of us (E.I.S.) selected 10 compact conformations of 48-mer chains on the three-dimensional cubic lattice and used their inverse folding algorithm to design HP (H, hydrophobic; P, polar) sequences that should fold to those "target" structures. The sequences, but not the structur...

متن کامل

Comparative Study of Hydrophobic-Polar and Miyazawa-Jernigan Energy Functions in Protein Folding on a Cubic Lattice Using Pruned-Enriched Rosenbluth Monte Carlo Algorithm

In this analysis of the contact energies guiding the protein folding, the performance of the PERM algorithm on a simple, cubic lattice is examined when Miyazawa-Jernigan (MJ) and Hydrophobic-Polar (HP) energy matrices are applied. Geometric similarity of minimum energy conformations of twenty proteins, generated when HP and MJ are used, is determined by the Root Mean Square Difference (RMSD) an...

متن کامل

Investigating energy-based pool structure selection in the structure ensemble modeling with experimental distance constraints: The example from a multidomain protein Pub1.

The structural variations of multidomain proteins with flexible parts mediate many biological processes, and a structure ensemble can be determined by selecting a weighted combination of representative structures from a simulated structure pool, producing the best fit to experimental constraints such as interatomic distance. In this study, a hybrid structure-based and physics-based atomistic fo...

متن کامل

CGU: An Algorithm for Molecular Structure Prediction

A global optimization method is presented for predicting the minimum energy structure of small protein-like molecules. This method begins by collecting a large number of molecular conformations, each obtained by finding a local minimum of a potential energy function from a random starting point. The information from these conformers is then used to form a convex quadratic global underestimating...

متن کامل

Guided macro-mutation in a graded energy based genetic algorithm for protein structure prediction

Protein structure prediction is considered as one of the most challenging and computationally intractable combinatorial problem. Thus, the efficient modeling of convoluted search space, the clever use of energy functions, and more importantly, the use of effective sampling algorithms become crucial to address this problem. For protein structure modeling, an off-lattice model provides limited sc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 86 3 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2012